基礎知識
シリコンデバイス

初めに
ウィキペディアをコピさせていただいている
2022/02/13-
表紙にもどる

半導体
半導体(はんどうたい、英: semiconductor)[注釈 1]とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体(不導体)の中間的な抵抗率をもつ物質を言う[1]。半導体は、不純物の導入や熱や光、磁場、電圧、電流、放射線などの影響で、その導電性が顕著に変わる性質を持つ[注釈 2]。この性質を利用して、トランジスタなどの半導体素子に利用されている[注釈 3]。
金属などの導体とゴムなどの絶縁体の中間の抵抗率を持つ物質を半導体(semiconductor)と呼ぶ。代表的なものとしては元素半導体のケイ素(Si)、ゲルマニウム(Ge)、化合物半導体のヒ化ガリウム(GaAs)、リン化ガリウム(GaP)、リン化インジウム(InP)などがある。
半導体の特徴は、固体のバンド理論によって説明される。
なお、バンド理論を用いれば、半導体とは、価電子帯を埋める電子の状態は完全に詰まっている(充満帯である)ものの、禁制帯を挟んで、伝導帯を埋める電子の状態は存在しない(空帯である)物質として定義される[注釈 4]。

半導体素子
半導体素子(はんどうたいそし、英: semiconductor device)とは、半導体の電気的特性を利用して作られる、素子と呼ばれる電気回路の構成要素である。
整流機能を有するダイオード、増幅機能を有するトランジスタ、スイッチング機能を有するサイリスタが基本的な種類である。
またトランジスタの論理回路を集積させて高度な演算機能を実現する集積回路(IC・LSI)、CCD・CMOSを利用した光電変換機能を集積した固体撮像素子などの応用例がある。
コンピュータ、携帯電話等の電子機器でその中心的機能を担っている。さらに機械分野でも制御機能の高度化に伴い自動車や各種産業機器にも組込まれている。
世界の電子機器メーカーの半導体需要は2018年において4,766億ドルであった[1]。
特徴
半導体素子が普及する以前は電気回路における能動素子として電子管(真空管など)が使われていた。 しかし半導体素子には次のような特徴があり、特定の用途・領域を除き電子管を代替した。
固体素子であり、真空管のように真空空間の確保、熱電子放出の機構を必要としない。
小型化、集積化が可能である。電力消費が少ない。
製造工程において組み立て作業を回避可能で、量産、生産性向上に適している。
機械的機構が無いため 振動や加速度の機械的条件に強く、低温動作も含めて長寿命化、信頼性確保の観点で有利である。
当初真空管に比べて不利とされていた弱点についても、それを補う方法が開発された。
温度による特性の変化が大きいので、補償回路が必要である。→補償回路を含んだ集積回路の登場。
電気的なストレス(過負荷、過電圧、過電流など)に弱い。→回路設計上の工夫や各種保護回路との併用。

鉱石検波器(1874)
鉱石検波器(こうせきけんぱき)は、半導体の性質を有する鉱石に金属針を接触させ、ショットキー障壁による整流作用を利用する、一種のダイオードである。世界最初の半導体素子の実用化であり、点接触型ダイオード、ショットキーバリアダイオードの遠い先祖とも言える。金属針を用いず、異なる鉱石同士を接触させることでも同様に働くこともあるため、そのような構成のものもある。
1874年、ブラウンによって金属硫化物に金属針を接触させることにより整流作用が生じることが発見され、1904年、ボースが方鉛鉱に金属針を接触させたもので、検波器としての最初の特許を取得している。1906年、ピカードがシリコン結晶に金属針を接触させて使うことで特許を取得した。単結晶に金属針を接触させることにより比較的その特性が安定、ピカードの発明は広く実用に供されることになった。日本では、逓信省電気試験所の鳥潟右一がほぼ同時期に発明している。鉱石検波器は、世界中でほぼ同時期に少しずつタイプの異なるものがそれぞれ発明されているため「鉱石検波器の最初の発明者は誰である」といったように一般的に言うことはできない(もちろん、個々の発明品について、それを発明したのは誰、ということは(記録があるものについては)言える)。鉱石の、特に結晶が重要であることから、クリスタル検波器ともよばれるようになった。
初期の鉱石検波器は、方鉛鉱や黄鉄鉱などの天然鉱石に金属針を接触させ、ほぼ毎回、感度の良い部分を金属針を動かし探って用いる方式のものであり、不安定で調整の難しいものであった。現代の観点からすると、方鉛鉱や黄鉄鉱などの天然鉱石は、結晶方位不定の多結晶体であり、微視的には、粗い表面を持つ多結晶面に、粗い表面を持つ金属面を接触させていることになるため、不安定きわまりなくわずかな変化により桁違いに変化する。そのために、懸命に感度の良い部分を探すことになる。
また一度、感度の良い部分を見つけても、空気中に置かれている鉱石の表面、そして金属針の表面は容易に酸化や水酸化される。従って使用のたびに、金属針により鉱石の表面を引っかき、金属と半導体の界面を再生させて使わなければならないのである(巨視的にはそのように説明できるが、「ガリガリ引っ掻く」という操作は微視的には結晶に多数の欠陥を導入する、という操作でもあり完全な解明は研究途上である)。
従来のコヒーラとは異なり、無線電波を検出するだけではなく、整流作用により振幅変調の復調が可能であるため、無線電話の受信機に、さらには世界的にラジオ放送が始まるとラジオ受信機に多用された。

真空管(1904, 1906)
真空管(しんくうかん、米: vacuum tube、英: radio valve)とは、内部を高度な真空とし、電極を封入した中空の管(管球)のことである[1]。陰極から陽極に流れる電子流を制御することによって増幅、検波、整流、発振などを行うことができる[2]。
概要
構造としては、一般的にガラスや金属あるいはセラミックスなどで作られた容器内部に複数の電極を配置し、容器内部を真空もしくは低圧とし、少量の稀ガスや水銀などを入れた構造を持つ。
原理や機能としては、電子を放出する電極(陰極)を高温にして熱電子放出効果により、陰極表面から比較的低い電圧により容易に電子を放出させ、この電子を電界や磁界により制御することにより、増幅、検波、整流、発振、変調などができる。
二極管が発明されたイギリスを中心とした欧州で主に、その電極の数により、二極管のことをダイオード[注釈 4]、三極管のことをトライオード[注釈 5]、四極管のことをテトロード[注釈 6]、五極管のことをペントード[注釈 7](以下同様)という。さらに二極管の中でも整流に用いるものを特にレクティファイア[注釈 8]と呼ぶこともある。
歴史
エジソンが白熱電球の実験中に発見したエジソン効果(1884年)が端緒となり、その後フレミングが発明(1904年)した素子が2極真空管(二極管)で、3極真空管(三極管)は、リー・ド・フォレストが発明(1906年)した。
既に白熱電球の製造技術があり、リー・ド・フォレストの真空管はウェスタン・エレクトリック社でもリー・ド・フォレストの特許のもとに生産に移され、1914年 には三極管は電話回線のリピーター回路に汎用されタイプM (101A) が製造された[10]。1915年のバージニア、アーリントン間の大陸横断電話回線の実験においては、550本の真空管が使われたとされている。使われた真空管はタイプL、タイプW、タイプSであった。アメリカ軍ではフレミングバルブを使っていたこともありフランス製の通信機を使っていたが、第一次世界大戦末期フランスからのRチューブの供給が滞るようになり、急遽、タイプJ (203A) から耐震構造化した受信用検波増幅管であるVT-1が、タイプL (101B) を元にタイプKの後継管として送信用5W型発振変調管であるタイプE (VT-2) [注釈 9]が製造された[11]。1929年には5極管 (UY-247[注釈 10]) が登場し、1935年に画期的なメタルビーム管 (6L6) が登場、これにより基本となる真空管技術が完成した[12]。初期のコンピュータには大量の真空管が使用され、寿命の揃った真空管を大量に調達するのが製作上の難関のひとつだった。例としてENIAC(1946年)には17468本が使われている。

ダイオード(造語1919)
ダイオード(英: diode)は整流作用(電流を一定方向にしか流さない作用)を持つ電子素子である。最初のダイオードは2極真空管で、後に半導体素子である半導体ダイオードが開発された。その後も研究が進み、今日では非常に様々な種類のダイオードが存在する。
語源
1919年、イギリスの物理学者ウィリアム・エクルズが、2極真空管のことを指して、ギリシア語のdi(2)と 英語のelectrode(電極)の語尾を合わせて造語した。
歴史
1900年代初頭、熱電子によるダイオード(真空管)と固体によるダイオード(半導体)は、無線受信機の復調用として同時期に個別に開発された。
1950年代は真空管ダイオードがラジオに最も多く使われた。これは初期の点接触半導体ダイオードが信頼性に劣り、また、多くの受信機には増幅用真空管が使われ、この真空管内にダイオード部を混成させることが容易であることと、真空管整流器およびガス入り整流器は高電圧・大電流用途に対し同時期の半導体ダイオード(セレン整流器など)よりも適していたことがあげられる。


セレン整流器
セレン整流器(セレンせいりゅうき)とは、セレンの半導体としての性質を利用した整流器のことである。
セレン自体はP型半導体としての性質を持つため、基板上にセレン多結晶膜を形成し、さらに適当なカドミウムやビスマスなどからなる易熔合金を貼り付けたものには、金属と半導体の接合によって生じるショットキー障壁が形成され、これを整流器として用いることができる。
セレン整流器の特性は現在スイッチング電源に良く用いられるショットキーバリアダイオードと良く似ており、逆耐圧が低く(30 V程度)、逆回復時間が無いため高速に動作する(容量成分はショットキーバリアダイオードよりもかなり大きい)。
逆耐圧が低いため、通常、多数の素子を直列に接続して使用する。

トランジスタ(1947)
トランジスタ(英: transistor)とは、電子回路において、信号を増幅またはスイッチングすることができる半導体素子である。
1940年代末に実用化されると、真空管に代わってエレクトロニクスの主役となった。論理回路を構成するための電子部品としては最も普及しており、集積回路(IC)の多くは微細なトランジスタの集合体である。1965年にムーアの法則で予言された通り、CPUやMPUに内蔵されているトランジスタの数は増え続け、今ではひとつのチップに1億個以上のトランジスタが搭載されている製品もある。CPUやMPUは、それらの膨大な数のトランジスタが高速でスイッチングを行うことで動作しており、スマートフォンやパソコン、コンピュータネットワーク、テレビ、自動車などのあらゆる機器や装置の動作においてトランジスタが関与している。なお、この名称はtransfer(伝達)とresistor(抵抗)を組み合わせたかばん語であり、ジョン・R・ピアスによって1948年に名づけられた[1]ものである。
歴史
一般には実用化につながった1947-1948年の、ベル研究所による発見および発明がトランジスタの始祖とされる。しかし、それ以前に増幅作用を持つ固体素子についての考察がよく知られているものでも何件かある。1925年、ユダヤ人物理学者ユリウス・エドガー・リリエンフェルトが、現在の電界効果トランジスタ (FET) に近い発明の特許をカナダで出願した[2]。1934年にはドイツの発明家オスカー・ハイルが同様のデバイスについて特許を取得している[3][4]。
1947年、ベル研究所の理論物理学者ジョン・バーディーンと実験物理学者ウォルター・ブラッテンは、半導体の表面における電子的性質の研究の過程で、高純度のゲルマニウム単結晶に、きわめて近づけて立てた2本の針の片方に電流を流すと、もう片方に大きな電流が流れるという現象を発見した。最初のトランジスタである点接触型トランジスタの発見である。固体物理学部門のリーダーだったウィリアム・ショックレーは、この現象を増幅に利用できる可能性に気づき、その後数か月間に大いに研究した。この研究は、固体による増幅素子の発明として、1948年6月30日に3人の連名で発表された。この3人は、この功績により、1956年のノーベル物理学賞を受賞している。transistor という用語はジョン・R・ピアスが考案した[5]。物理学者で歴史家のロバート・アーンズ(英語版)によれば、ベル研究所の特許に関する公式文書には、ショックレーらが、前述のリリアンフェルトの特許に基づいて動作するデバイスを作ったことが書かれているが、それについて後の論文や文書は全く言及していないという[6]。